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S T A B I L I T Y  O F  M O T I O N  I N  A P L A N A R  L A Y E R  O F  

I N H O M O G E N E O U S  I D E A L  I N C O M P R E S S I B L E  L I Q U I D  H A V I N G  

F R E E  B O U N D A R I E S *  

V. E.  Zakhvataev UDC 532.5 

1. Lagrangian  Coordinates.  One formulates the motion of an inhomogeneous ideal incompressible liquid having a 
free boundary as follows. At the initial instant, we are given the volume of the liquid f~(0), which has the boundary F(0), 
together with the density and velocity pattern: 

ult= o = uo(x), d ivuo = O, Plt=o = po(x), x e fl(O). (1.1) 

The volume occupied at time t is f](t), and the boundary is P(t). 

It is necessary to determine fl(t), the velocity vector u, the pressure p, and the density p, which satisfy the following 

conditions: within fl(t) 

0u Vp 
c3--T + u .  Vu  = - - -  + g; (1.2) P 

0__.pp + u-  Vp = 0; (1.3) 
Ot 

div u = 0; (1.4) 

and at the free boundary F(0 

p = po - a + ; (1.5) 

df I = 0 .  
~-  f=o (1.6) 

Here g is the vector for the external mass forces, P0 the given external pressure, R 1 and R 2 are the principal radii of curvature 
for normal sections of F(t) (it is assumed that R 1 > 0, R 2 > 0, if the corresponding section is convex within f2(t)), a > 0 
surface tension, and f(x, t) = 0 the equation for the free boundary r(t).  

A major difficulty in researching nonstationary solutions with free boundaries lies in the need to derive unknown 
quantities (velocity, density, and pressure) in the region fl(t), which is not known in advance and is itself one of the unknowns. 

Transfer to Lagrangian coordinates enables one to consider the case in a certain fixed and known region, although the equations 

describing the motion can become more complicated. We introduce them as the coordinates of the liquid particles at the initial 
instant: 

xlt=o = ~. (1.7) 
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Then the law of motion is defined by the solution to 

with (1.7) as initial condition and is derived as 

dx 
~t-q- = uCx, t) 

x = x ( ~ , t ) ,  ~ �9 f l (0) .  

By virtue of (1.3), p(x(~, t), t) = P0(O, and after certain transformations [1] we get a treatment for the unknowns x(~, 
t), p(~, t) = p(x(~, 0,  0: 

d i v e ( M - I x , )  = 0, M'(xt t  - g) + (1/po)V~p = O, 

in which M is a Jacobi reflection matrix x = x(~, t): M = 0(x)/0(O, with M* and M -1 the transposed M matrix and the one 

reciprocal to it, and dive, V~ denote the divergence and gradient operators with respect to the variable ~. We subsequently omit 
the subscript ( .  

We add the (1.5) boundary condition written in Lagrangian coordinates and the initial condition (1.1) to get the 
formulation in terms of Lagrangian variables. 

2. Smal l -Per turbat ion  Evolution Equations in Lagrangian  Coordinates.  Let there be known a solution to the above 

treatment formulated in terms of Lagrangian coordinates with the (1.1) initial conditions, which we call the basic solution. 

Consider another solution (the perturbed one) having the same initial region ft(0) and initial data 

~'o(~) = po(~)  + Qo(~) ,  

We assume for the perturbed motion that 

= x + x ( ~ ,  t), 

xt(~) = Uo(~) + Uo(~), d ivUo = 0. (2.1) 

~ =  p+ M ' - I V p  �9 X + P(~,t). 

If we assume that the initial perturbations are small, one hopes that the perturbations will be small at least for a restricted time 

interval, and we consider the behavior of small perturbations in the linear approximation. 

We assume that the perturbations and their derivatives are small. Then we follow [1] and obtain after transformations 
in terms of the Lagrangian coordinates that the linear approximation is 

M ' X t ,  - MfiX + VS/po  - OoVp/p2o+ (2.2) 

+ ( M " I V p .  X)Vpo/P2o- AX = 0, A = V(g) - (V(g) ) ' :  

d i v ( M - 1 X )  = 0; (2.3) 

P - aR + aAr ( t )R  = 0; (2.4) 

R = b / n . M - 1 U d t ,  ~ E F ( 0 ) ,  t > 0 .  (2.5) 

0 

Here At(t) is the result of  transforming the Laplace-Bel t rami  operator to Lagrangian coordinates [1], with 

IVfol Op a(ol__f + 1 ) ;  
b(~ , t )= lM._ lV fo[ ;  a=  Oar(,) R 1 

and n = n(O the vector for the exterior normal to F(0). 
For clarity we note that in Euler coordinates R(x, t) = nr(t).X, x E F(t), so R is a measure of  the deviation in the 

perturbed free boundary from the unperturbed position. 

To (2.2)-(2.5) we add the initial conditions 

Xl,=o = 0, Xt]t= o = Uo, div Uo = 0. (2.6) 
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The (2.2)-(2.6) treatment describes the evolution of small perturbations in an inhomogeneous ideal incompressible liquid 

having a free boundary in the linear approximation. 

3. Planar-Layer  Motional Stability. We consider a basic two-dimensional flow def'med by 

r/ 

y = , 7 - , ( t ) ,  ~(o) = o, r,(,7,t) = ( ~ " - g ) / a o ( z ) d ~ + p o ( t ) ,  
0 

~ ( - o o ,  + o o ) ,  ~ ~ [0, ~o1, g = ( o , - g ) .  

This solution corresponds to the motion of an infinite planar layer bounded by horizontal free boundaries. At the upper 

boundary, we are given the pressure Pl(t), and at the lower one, P0(t). The function s(t) should satisfy 

pl( t )  - po(t) 

f po dz 
0 

Then the layer moves as a result of  the difference in pressures above and below, and also under gravity. The final formula for 

p(7/, t) for a layer having free boundaries is 

p(o ,  t) = 

~7 
(pl( t )  - po(t))  f po dz 

0 
r/O 
f Po dz + po(t) 
0 

We use (2.2)-(2.6) to examine the stability. We render the variables dimensionless by taking the scale factors for the spatial 

variables, time, velocity, density, and pressure respectively as 7/o, ~o~r~ -, g ~ o  , Po(~/o), g~/oPo0/o). 
Let q(~, T/, t) be a sufficiently smooth function such that xI,~ = - y ,  xI, = X. Then we get the following treatment: 

P O ( ~ n t t  -t- a~I /~)  = - B o k I / ~ ,  7 / =  1, 

Po(~nu + a ~ r  = BokOr162162 7/= 0, 

~l t=o  = 0, ~dt=o  = ~o(~,77) 

2 S" in which 0I'0(~, ~/) is a given function, Bo = e/(g~loPo(no)) is the Bond number, and a = - -  g). I f  g = 0, the equations 

remain as before, and only a = s"/g o, where go is the characteristic acceleration. Coefficient a is expressed in terms of the 
dimensionless quantities as 

p l C t )  - p o ( t )  
a-~-. 

1 
f po dz 
0 

We assume that the density of the liquid particles is not perturbed at the initial instant and that the layer moves with 

equal acceleration and that the liquid stratification is exponential, i.e., Q0 = O, a = const, po,i/po = r = const. 

The sign of a characterizes the pressure difference between the upper and lower boundaries, while the sign of r 
indicates the direction of  the density gradient. 
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We seek a solution as the series 

9,~k(~,r/, t) = )-'~ ~,k(r/) exp (i(n~ + a,~ t ) ) .  
n,k n,k 

The characteristic instability parameters (complex quantities) t~nk are determined from the corresponding spectral treatment. 

If  the imaginary part of at least one of  the ank is negative, the solution will contain an exponentially increasing mode, and this 

is a sign of instability. We subsequently put ot = ~nk, omitting the subscripts. 

We write the spectral problem as 

a2~nn + ra2~n  + ( a m  2 - n2a2)@ = O, 
a2~n = n4Bo ~ - n2ae~, 

a2~n = - n 4 B o  ~ exp (r) - n2a~,  

0 < 0 < 1 ,  

r / = l ,  

17=0. 

Let a = 0. We substitute the solution to the first equation here in the boundary conditions to get an algebraic system 

for C i and C2: 

C1(a271 -b n4Boexp (r)) + C2(a272 -t- n4Boexp (r)) = 0, 

C1(a271 - n4Bo) exp ("/1) + C2(a:272 - n4Bo) exp (7:2) = 0. 

We equate the determinant of  the resulting system to zero and get an equation for ct, where calculations show that Ac~ 4 

+ Bc~ 2 + C = 0, where calculations show that A < 0, B > 0, C < 0, Vietta's theorem gives that all the roots a are real. 

Then for a = 0, the motion is neutrally stable, when the layer falls only under the action of gravity (s" = g). 

Now let a ;~ 0. We make the substitution q, = y exp(-rr//2), to get 

y " + I y = O ,  0 < r / <  1; 

y ' + I l y = O ,  r /= i; 

y' + I2y = O, 7? = O, 

�9 / '2  = - r / 2  + ( n /a ) 2a  + n4Boexp (~) /~  ~ 

(3.1) 

(3.2) 

(3.3) 

Let I = 0, i.e., ~2 = n2ar/(r2/4 + n2). Then the general solution to (3.1) is y = Cl~7 + C 2. Substitution into the 

boundary conditions gives a system for C 1 and C 2, which has nontrivial solutions if I 1 - -  12 - -  IlI  2 = 0. We substitute detailed 
2 

expressions for 11 and 12 to get a biquadratic equation for c~. The requirement that the roots of  this equation should satisfy ct 1,2 
= n2ar/(r2/4 + n2), is a constraint on the parameters. 

Let I ;a 0. We substitute the general solution to (3.1) into the boundary conditions to get an equation for a:  

(z + s112) sin v '7  = v T ( t l  - x2) cos vT .  (3.4) 

If  we neglect surface tension (Bo = 0), we have 

a = ~ / l a n l e x p ( i r m / 2 ) ,  m = 0,1,2,3;  

ct = 4 -n~ /ar / ( r2 /4  + n 2 + (rk)2), if 

a = •  + n 2 + ( rk )2 ) ,  if 

k = 0 , •  

ar  > 0; 

ar  < 0, 

(3.5) 

(3.6) 

(3.7) 

180 



The first group of values for a in (3.5) does not intersect with the second group (3.6) and (3.7). With any relation between 

the parameters, the motion is unstable on account of  the first group. 

This conclusion may be compared with the [2] results, which dealt with the stability of motion for a planar layer of 

homogeneous liquid. Although the perturbations were taken as different, the linearity of the treatments allows one to compare 

them. 

When Bo = 0, the first g roupof  a corresponds to the values obtained in [2] for a homogeneous liquid. These a reflect 

the growth of surface waves, which are not related to inhomogeneity in the liquid and are due to interphase boundaries. The 

stratification led to the occurrence of a further set: a denumerable series of values for a that expresses the rise rates for the 

so-called internal waves. There are two justifications for the name. In that case, not only do internal factors participate in 

generating the waves, but also the waves perturb only the interior part of the layer and do not affect the boundaries and thus 

the external medium. 

In [2] it was also shown that when there are capillary forces, the surface tension stabilizes the instability in modes with 

sufficiently short wavelengths. However, in our case, (3.4) with n --- oo gives 

a~-4-v/ -~ ,  a r > 0 ,  a , ~ 4 - i  1 ~ ,  a r < 0 .  

In that first approximation, the surface tension does not stabilize sufficiently short-wave internal waves. 

If  we supply solid walls at the lower and upper boundaries, we get the equation sin ~ = 0 for a. 

The values of o~ are defined by (3.6) and (3.7), in which a is expressed as a = s"/g - -  1, so in this case the motion 

is neutrally stable for ar > 0 and unstable for ar < 0. As the surface waves are suppressed here by the solid walls, it is now 

more evident that the (3.6) and (3.7) series correspond to internal waves. They evidently in this approximation are not related 

to surface waves, since the absence of surface waves does not alter (3.6) and (3.7), while the absence of internal waves in such 

a case for a homogeneous liquid [2] does not alter the character of the formulas corresponding in [2] to (3.5). We note that 

the internal waves do not perturb the free boundaries in the linear theory. 

We now compare these results with conclusions from papers dealing with the stability at rest for an inhomogeneous 

layer. In [3], stability was examined for a thin layer of  liquid between two semiinfinite media having constant density. The 

wavelength of the perturbations was assumed large by comparison with the layer thickness. It was found that if the acceleration 

direction for the external mass forces is opposite to that of the density gradient, there exists a denumerable infinite number of 

modes as internal waves for each wave number. The formulas for ~ correspond to those obtained in our case with g replaced 

by a. 

This correspondence and the physical reasons for the instability indicate that the characteristic internal-wave instability 

parameters are dependent on the boundary conditions only via the pressure distribution in the basic unperturbed motion. With 

the same pressure distribution, the layer may adjoin a gas (basic example here) or solid walls, or else liquid ones [3] (at least 

in the thin-layer approximation), and the results will be identical. From that viewpoint, linear internal waves are similar to 

modes in nonlinear systems on account of a certain independence from the external factors. 

In [4, 5], instability was considered in a two-layer or continuously stratified liquid by means of  the analogy with 

stability theory for hamiltonian finite-dimensional systems. Let �9 be the potential for the external mass forces, with the basic 

state hydrostatic equilibrium in a certain region having a fixed boundary, and Po the equilibrium density function. We restrict 

the class of permissible motions by means of the condition Q0(~) = 0 and an additional requirement (a generalized treatment 

of the potentiality of  the motion) to show that if dcI,(p0)/dp 0 < 0, everywhere in the region occupied by the liquid, then the 

equilibrium is stable in the mean-squares. If  everywhere d,I,(p0)/do0 > 0, the basic state is unstable. This corresponds to the 
[3] results and ours. 

In [6], a similar treatment was considered for internal waves in an unbounded planar channel at rest bounded by solid 

walls. The stratification of  the liquid was exponential and r < 0, while the initial data were fmite and certain additional 

conditions were introduced. In our case, this corresponds to neutral stability (a = - 1 ,  ar > 0). An interesting point is that 

the solution for t ~ + oo stabilizes to steady-state plane-parallel flow if the accelerations of the particles differ from zero at 
the initial instant. Evidently, an analogous effect arises for a moving layer with solid walls. 

To sum up, we can say that internal waves do not increase exponentially if the pressure is higher in the denser part. 

This corresponds to Taylor's classical result on the instability of  the interface between liquids differing in density [7]: the inter- 
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face boundary is unstable when the acceleration of the light liquid is directed into the heavier one (the gravitational force is 
replaced by the accelerated motion of the coordinate system) and is stable if the converse applies. 

I am indebted to V. K. Andreev for assistance. 
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